Energy Harvesting for Throughput Enhancement of Cooperative Wireless Sensor Networks

Author:

Nguyen Van-Dinh1ORCID,Nguyen Chuyen T.2ORCID,Shin Oh-Soon1ORCID

Affiliation:

1. School of Electronic Engineering, Soongsil University, Seoul 06978, Republic of Korea

2. School of Electronics and Telecommunications, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Vietnam

Abstract

We consider an energy harvesting for cooperative wireless sensor networks with a nonlinear power consumption model. The information transmission from the source node to the destination node is assumed to occur via several clusters of decode-and-forward relay nodes. We assume that all the source and relay nodes have the ability to harvest energy from the environment and use that harvested energy to transmit and forward the information to the next hop. Under such assumption, the objective of our design is to improve the total throughput of the end-to-end link over a number of transmission blocks subject to constraints on energy causality, battery overflow, and time duration for energy harvesting. The optimization problem is found to be a nonconvex maximin fractional program, which is difficult to solve in general. We present an efficient iterative algorithm to solve the optimization problem. Specifically, by introducing novel transformations, we apply an approximate convex technique to obtain a convex problem at each iteration. We then propose an iterative power allocation algorithm which converges to a locally optimal solution at a Karush-Kuhn-Tucker point. Numerical results are provided to evaluate the proposed scheme.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3