Research on time synchronization of linear pulse-coupled oscillators model with delay in nearest neighbor wireless multi-hop networks

Author:

Cui Lizhen1,Cao Jian1ORCID,An Zhulin2,Yang Yong1,Guo Qianqian1

Affiliation:

1. School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China

2. Institute of Computer Technology, Chinese Academy of Sciences, Beijing, China

Abstract

Time synchronicity works as a popular requirement in wireless sensor networks. Pulse-coupled oscillators similar to firefly flashing and synchronization via discrete pulse coupling are widely used in wireless sensor networks. In this article, we have studied the time synchronization with communication delay in the nearest neighbor network of distributed sensors, based on the pulse-coupled oscillators model of synchronicity achieved by biological systems. First, we present a linear pulse-coupled oscillators model with coupling delay and the model is used to analyze the wireless sensor networks synchronization with communication delay. Second, we mathematically analyze the firing behaviors in the linear pulse-coupled oscillators network using the delayed excitatory coupling and track the synchronization process of the two and multi-oscillators and obtain the synchronization conditions from the regression mapping. Finally, through the proposed model implementation in the wireless sensor networks simulation framework, we demonstrate that the multi-oscillators system can be synchronized from a random starting stage distribution under linear phase responding functions and the nearest neighbor communication. The results show that our approach can achieve clock synchronization in wireless sensor networks with delayed nearest neighbor communication.

Funder

department of science and technology of inner mongolia

natural science foundation of inner mongolia

national natural science foundation of china

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3