Tracking and climbing behavior recognition of heavy-duty trucks on roadways

Author:

Tang Lei1ORCID,Jia Jingchi1,Duan Zongtao1,Ma Jingyu1,Wang Xin2,Kong Weiwei3

Affiliation:

1. School of Information Engineering, Chang’an University, Xi’an, China

2. Department of Geomatics Engineering, University of Calgary, Calgary, Canada

3. Shaanxi Skywin Internet of Trucks Information Technology Co., Ltd, Xi’an, China

Abstract

The tracking and behavior recognition of heavy-duty trucks on roadways are keys for the development of automated heavy-duty trucks and an advanced driver assistance system. The spatiotemporal information of trucks from trajectory tracking and motions learnt from behavior analysis can be employed to predict possible driving risks and generate safe motion to avoid roadway accidents. This article presents a unified tracking and behavior recognition algorithm that can model the mobility of heavy-duty trucks on long inclined roadways. Random noise within the sampled elevation data is addressed by time-based segmentation to extract time-continuous samples at geographical locations. A Kalman filter is first used to distinguish error offsets from random noise and to estimate the distribution of truck elevations for different time intervals. A Markov chain Monte Carlo model is then applied to classify truck behaviors based on the change in elevation between two geographical locations. A heavy-duty truck mobility (HVMove) model is constructed based on the map information to apply the roadway geometry to the tracking and behavior recognition algorithm. We develop an extended Metropolis–Hastings algorithm to tune the parameters of the HVMove model. The proposed model is verified and evaluated through extensive experiments based on a real-world trajectory dataset covering sections of an expressway and national and provincial highways. From the experimental results, we conclude that the HVMove model provides sufficient accuracy and efficiency for automated heavy-duty trucks and advanced driver assistance system applications. In addition, HVMove can generate maps with the elevation information marked automatically.

Funder

Key Science and Technological Innovation Team of Shanxi Province, China

Key Research and Development Plan Project of the Shaanxi Province, China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3