A sensor node scheduling algorithm for heterogeneous wireless sensor networks

Author:

Wang Zhangquan1,Chen Yourong1ORCID,Liu Banteng1,Yang Haibo1,Su Ziyi1,Zhu Yunkai2

Affiliation:

1. College of Information Science and Technology, Zhejiang Shuren University, Hangzhou, Zhejiang, China

2. Zhejiang Hangjia Technology Development Limited Company, Hangzhou, Zhejiang, China

Abstract

To improve the regional coverage rate and network lifetime of heterogeneous wireless sensor networks, a sensor node scheduling algorithm for heterogeneous wireless sensor networks is proposed. In sensor node scheduling algorithm, heterogeneous perception radius of sensor node is considered. Incomplete coverage constraint and arc coverage interval are analyzed. Regional coverage increment optimization model, arc coverage increment optimization model, and residual energy optimization model are proposed. Multi-objective scheduling model is established using weight factors and integrated function. Furthermore, the heuristic method is proposed to solve the multi-objective optimization model, and scheduling scheme of heterogeneous sensor nodes is obtained. When the network is in operation for a period of time, some sensor nodes are invalid and relevant regions are uncovered. The repair method is proposed to wake up sleep sensor nodes and repair the coverage blind area. The simulation results show that if keeping the same regional coverage rate, sensor node scheduling algorithm improves network lifetime, increases number of living sensor nodes, and keeps average node energy consumption at a low level. Under certain conditions, sensor node scheduling algorithm outperforms DGREEDY, two-tiered scheduling, and minimum connected cover.

Funder

natural science foundation of zhejiang province

zhejiang province public welfare technology application research project

Major Science and Technology Special Project of Zhejiang Science and Technology Department of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3