QBPP: Quality of services–based location privacy protection method for location-based services in cloud-enabled Internet of vehicles

Author:

Chen Ji-ming1,Li Ting-ting2ORCID,Wang Liang-jun2

Affiliation:

1. School of Computer Science and Communication Engineering, Jiangsu Key Laboratory of Security Technology for Industrial Cyberspace, Jiangsu University, Zhenjiang, China

2. School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, China

Abstract

Location-based services has been widely applied in cloud-enabled Internet of vehicles. Within these services, location privacy issues have captured significant attention. Vehicles use the technology of anonymity to implement occultation, the location is not revealed. In this process, large-scale data transmissions can reduce the quality of services. In order to ensure location privacy and high-quality services, the cloud manager customizes virtual machines for vehicles to support location-based services according to the vehicles’ demands. To achieve better performance, this article presents a conditional anonymity method that does not use bilinear pairings to address the problem of privacy disclosure by using discrete logarithm problem and Diffie–Hellman problem. Moreover, asymmetric key algorithms are used in the Internet of vehicles environment to reduce the cost. To guarantee secure data transmission in Internet of vehicles, the batch validation technique is used to address data integrity. Our theoretical security analysis and experiments show that the proposed scheme is secure in compared attack models, such as impersonation attacks, replay attacks, the man-in-the-middle attacks, and so on. Our proposed scheme ensures the security requirements such as message authentication, location privacy protection, and traceability, while lowering transmission and computation cost.

Funder

National Natural Science Foundation of China

Industrial Science and Technology Foundation of Zhenjiang City

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3