Spatial–degree of freedom improvement of interference alignment in multi-input, multi-output interference channels

Author:

Li Yi-bing1,Diao Xue-ying1,Dong Qian-hui1

Affiliation:

1. College of Information and Communication Engineering, Harbin Engineering University, Harbin, China

Abstract

As we know, the degree of freedom approximates the capacity of a network. To improve the achievable degree of freedom in the K-user interference network, we propose a rank minimization interference minimization algorithm. Unlike the existing methods concentrating on the promotion of degree of freedom, our rank optimization method works directly with the interference matrix rather than its projection using the receive beamformers. Moreover, we put the trace constraint of the square root of desired matrix into the rank optimization to prevent the received signal-to-interference-plus-noise ratio from reduction. The decoders are designed through a weight interference leakage minimization method. Considering that the practical obtainable signal-to-noise ratio may be limited, we improve the design of decoders in rank minimization interference minimization, and propose the rank minimization rate maximization. Rank minimization rate maximization aims to reduce the impact of interference on undesired users as much as possible while improving the desired data rate. Simulation results show that rank minimization interference minimization algorithm can provide more interference-free dimensions for desired signals than other rank minimization methods. Rank minimization rate maximization outperforms rank minimization interference minimization at low-to-moderate signal-to-noise ratios, and its performance gets closer to rank minimization interference minimization with the increase in signal-to-noise ratio. Furthermore, in an improper system, rank minimization rate maximization still performs well.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3