Locally differentially private continuous location sharing with randomized response

Author:

Xiong Xingxing1ORCID,Liu Shubo1,Li Dan12,Wang Jun3,Niu Xiaoguang1

Affiliation:

1. School of Computer Science, Wuhan University, Wuhan, China

2. Hubei Water Resources Research Institution, Wuhan, China

3. College of Computer Science, South-Central University for Nationalities, Wuhan, China

Abstract

With the growing popularity of fifth-generation-enabled Internet of Things devices with localization capabilities, as well as on-building fifth-generation mobile network, location privacy has been giving rise to more frequent and extensive privacy concerns. To continuously enjoy services of location-based applications, one needs to share his or her location information to the corresponding service providers. However, these continuously shared location information will give rise to significant privacy issues due to the temporal correlation between locations. In order to solve this, we consider applying practical local differential privacy to private continuous location sharing. First, we introduce a novel definition of [Formula: see text]-local differential privacy to capture the temporal correlations between locations. Second, we present a generalized randomized response mechanism to achieve [Formula: see text]-local differential privacy for location privacy preservation, which obtains the upper bound of error, and serve it as the basic building block to design a unified private continuous location sharing framework with an untrusted server. Finally, we conduct experiments on the real-world Geolife dataset to evaluate our framework. The results show that generalized randomized response significantly outperforms planar isotropic mechanism in the context of utility.

Funder

Major Technical Innovation Project of Hubei

Applied Basic Research Project of Wuhan

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Differential Privacy Preservation for Continuous Release of Real-Time Location Data;Entropy;2024-02-03

2. Sensitivity Support in Data Privacy Algorithms;2022 2nd Asian Conference on Innovation in Technology (ASIANCON);2022-08-26

3. Privacy-Aware Factorization-Based Hybrid Recommendation Method for Healthcare Services;IEEE Transactions on Industrial Informatics;2022-08

4. A Comprehensive Survey on Local Differential Privacy;Security and Communication Networks;2020-10-08

5. A Personalized Preservation Mechanism Satisfying Local Differential Privacy in Location-Based Services;Communications in Computer and Information Science;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3