A novel approach for energy- and memory-efficient data loss prevention to support Internet of Things networks

Author:

Hejazi Pooya1ORCID,Ferrari Gianluigi2ORCID

Affiliation:

1. Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran

2. Internet of Things (IOT) Lab, Department of Engineering and Architecture, University of Parma, Parma, Italy

Abstract

Internet of Things integrates various technologies, including wireless sensor networks, edge computing, and cloud computing, to support a wide range of applications such as environmental monitoring and disaster surveillance. In these types of applications, IoT devices operate using limited resources in terms of battery, communication bandwidth, processing, and memory capacities. In this context, load balancing, fault tolerance, and energy and memory efficiency are among the most important issues related to data dissemination in IoT networks. In order to successfully cope with the abovementioned issues, two main approaches—data-centric storage and distributed data storage—have been proposed in the literature. Both approaches suffer from data loss due to memory and/or energy depletion in the storage nodes. Even though several techniques have been proposed so far to overcome the abovementioned problems, the proposed solutions typically focus on one issue at a time. In this article, we propose a cross-layer optimization approach to increase memory and energy efficiency as well as support load balancing. The optimization problem is a mixed-integer nonlinear programming problem, and we solve it using a genetic algorithm. Moreover, we integrate the data-centric storage features into distributed data storage mechanisms and present a novel heuristic approach, denoted as Collaborative Memory and Energy Management, to solve the underlying optimization problem. We also propose analytical and simulation frameworks for performance evaluation. Our results show that the proposed method outperforms the existing approaches in various IoT scenarios.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3