Maximizing spatial–temporal coverage in mobile crowd-sensing based on public transports with predictable trajectory

Author:

Wang Chaowei1,Li Chensheng1,Qin Cai1,Wang Weidong1,Li Xiuhua1

Affiliation:

1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China

Abstract

Mobile crowd-sensing is a prospective paradigm especially for intelligent mobile terminals, which collects ubiquitous data efficiently in metropolis. The existing crowd-sensing schemes based on intelligent terminals mainly consider the current trajectory of the participants, and the quality highly depends on the spatial-temporal coverage which is easily weakened by the mobility of participants. Nowadays, public transports are widely used and affordable in many cities around the globe. Public transports embedded with substantial sensors act as participants in crowd-sensing, but different from the intelligent terminals, the trajectory of public transports is schedulable and predictable, which sheds an opportunity to achieve high-quality crowd-sensing. Therefore, based on the predictable trajectory of public transports, we design a novel system model and formulate the selection of public transports as an optimization problem to maximize the spatial–temporal coverage. After proving the public transport selection is non-deterministic polynomial-time hardness, an approximation algorithm is proposed and the coverage is close to 1. We evaluate the proposed algorithm with samples of real T-Drive trajectory data set. The results show that our algorithm achieves a near optimal coverage and outperforms existing algorithms.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the sensing power of mixed vehicle fleets;Transportation Research Part B: Methodological;2024-12

2. SenseNow: A Time-Dependent Incentive Approach for Vehicular Crowdsensing;IEEE Open Journal of Intelligent Transportation Systems;2024

3. Introduction;Industrial Ecology and Environmental Management;2024

4. Trip-based mobile sensor deployment for drive-by sensing with bus fleets;Transportation Research Part C: Emerging Technologies;2023-12

5. A survey of urban drive-by sensing: An optimization perspective;Sustainable Cities and Society;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3