Quantitative evaluation of fault propagation in a commercial cloud system

Author:

Wang Chao1ORCID,Fu Zhongchuan2

Affiliation:

1. Computer School, Beijing Information Science and Technology University, Beijing, China

2. Computer Department, Harbin Institute of Technology, Harbin, China

Abstract

As semiconductor technology scales into the nano regime, hardware faults have been threats against computational devices. Cloud systems are incorporating more and more computing density and energy into themselves; thus, fundamental research on topics such as dependability validation is needed, in order to verify the robustness of clouds for sensor networks. However, dependability evaluation studies have often been carried out beyond isolated physical systems, such as processors, sensors, and single boards with or without operating system hosts. These studies have been performed using inaccurate simulations instead of validating complete cloud software stacks (firmware, hypervisor, operating system hosts and workloads) as a whole. In this article, we describe the implementation of a fault injection tool, which validates the dependability of a commercial cloud software stack. Hardware faults induced by high energy density environments can be injected; the fault propagation through the cloud software stack is traced, and quantitatively evaluated. Experimental results show that the integrated fault detection mechanism of the cloud system, such as fatal trap detectors, has left a detection margin of 20% silent data corruption to narrow down. We additionally propose two detection mechanisms, which proved good performance in fault detection of cloud systems.

Funder

Research Funds for Education Committee of Beijing

Natural Science Foundation of Beijing Municipality

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3