Semi-supervised machine learning for primary user emulation attack detection and prevention through core-based analytics for cognitive radio networks

Author:

Srinivasan Sundar1ORCID,Shivakumar KB2,Mohammad Muazzam3

Affiliation:

1. Department of ECE, Mewar University, Chittorgarh, India

2. Department of TCE, Sri Siddhartha Institute of Technology, Tumakuru, India

3. Mewar University, Chittorgarh, India

Abstract

Cognitive radio networks are software controlled radios with the ability to allocate and reallocate spectrum depending upon the demand. Although they promise an extremely optimal use of the spectrum, they also bring in the challenges of misuse and attacks. Selfish attacks among other attacks are the most challenging, in which a secondary user or an unauthorized user with unlicensed spectrum pretends to be a primary user by altering the signal characteristics. Proposed methods leverage advancement to efficiently detect and prevent primary user emulation future attack in cognitive radio using machine language techniques. In this paper novel method is proposed to leverage unique methodology which can efficiently handle during various dynamic changes includes varying bandwidth, signature changes etc… performing learning and classification at edge nodes followed by core nodes using deep learning convolution network. The proposed method is compared with that of two other state-of-art machine learning-based attack detection protocols and has found to significantly reduce the false alarm to secondary network, at the same time improve the overall detection accuracy at the primary network.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on cognitive radio network attack mitigation using machine learning and blockchain;EURASIP Journal on Wireless Communications and Networking;2023-09-30

2. Bibliography;5G and Beyond Wireless Communication Networks;2023-09-08

3. Machine Learning Techniques Based on Primary User Emulation Detection in Mobile Cognitive Radio Networks;Sensors;2022-06-21

4. Machine Learning in NextG Networks via Generative Adversarial Networks;IEEE Transactions on Cognitive Communications and Networking;2022-06

5. When Machine Learning Meets Spectrum Sharing Security: Methodologies and Challenges;IEEE Open Journal of the Communications Society;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3