Review and classification of trajectory summarisation algorithms: From compression to segmentation

Author:

Amigo Daniel1ORCID,Sánchez Pedroche David1ORCID,García Jesús1,Molina José Manuel1

Affiliation:

1. Applied Artificial Intelligence Group (GIAA), University Carlos III of Madrid, Madrid, Spain

Abstract

With the continuous development and cost reduction of positioning and tracking technologies, a large amount of trajectories are being exploited in multiple domains for knowledge extraction. A trajectory is formed by a large number of measurements, where many of them are unnecessary to describe the actual trajectory of the vehicle, or even harmful due to sensor noise. This not only consumes large amounts of memory, but also makes the extracting knowledge process more difficult. Trajectory summarisation techniques can solve this problem, generating a smaller and more manageable representation and even semantic segments. In this comprehensive review, we explain and classify techniques for the summarisation of trajectories according to their search strategy and point evaluation criteria, describing connections with the line simplification problem. We also explain several special concepts in trajectory summarisation problem. Finally, we outline the recent trends and best practices to continue the research in next summarisation algorithms.

Funder

Ministerio de Economía y Competitividad

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of trajectory simplification methods on modeling carbon dioxide emissions from ships;Ocean Engineering;2024-08

2. A survey on the computation of representative trajectories;GeoInformatica;2024-04-02

3. Context learning from a ship trajectory cluster for anomaly detection;Neurocomputing;2024-01

4. Efficacy of Current Dysarthric Speech Recognition Techniques;2023 International Conference on Advanced Computing & Communication Technologies (ICACCTech);2023-12-23

5. Summarizing Trajectories Using Semantically Enriched Geographical Context;Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3