A local algorithm to approximate the global clustering of streams generated in ubiquitous sensor networks

Author:

Rodrigues Pedro Pereira123ORCID,Araújo João4,Gama João35ORCID,Lopes Luís46

Affiliation:

1. Centre for Health Technology and Services Research (CINTESIS), Porto, Portugal

2. Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine (MEDCIDS-FMUP), University of Porto, Porto, Portugal

3. Artificial Intelligence and Decision Support Laboratory (LIAAD), INESC TEC, Porto, Portugal

4. Centre for Research in Advanced Computing Systems (CRACS), INESC TEC, Porto, Portugal

5. Faculty of Economics (FEP), University of Porto, Porto, Portugal

6. Department of Computer Science, Faculty of Sciences (DCC-FCUP), University of Porto, Porto, Portugal

Abstract

In ubiquitous streaming data sources, such as sensor networks, clustering nodes by the data they produce gives insights on the phenomenon being monitored. However, centralized algorithms force communication and storage requirements to grow unbounded. This article presents L2GClust, an algorithm to compute local clusterings at each node as an approximation of the global clustering. L2GClust performs local clustering of the sources based on the moving average of each node’s data over time: the moving average is approximated using memory-less statistics; clustering is based on the furthest-point algorithm applied to the centroids computed by the node’s direct neighbors. Evaluation is performed both on synthetic and real sensor data, using a state-of-the-art sensor network simulator and measuring sensitivity to network size, number of clusters, cluster overlapping, and communication incompleteness. A high level of agreement was found between local and global clusterings, with special emphasis on separability agreement, while an overall robustness to incomplete communications emerged. Communication reduction was also theoretically shown, with communication ratios empirically evaluated for large networks. L2GClust is able to keep a good approximation of the global clustering, using less communication than a centralized alternative, supporting the recommendation to use local algorithms for distributed clustering of streaming data sources.

Funder

European Regional Development Fund

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data stream analysis: Foundations, major tasks and tools;WIREs Data Mining and Knowledge Discovery;2021-03-02

2. Healthcare;The Internet of Things;2020-03-06

3. Clustering Data Streams: A Complex Network Approach;Computational Science and Its Applications – ICCSA 2019;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3