An adaptive method based on contextual anomaly detection in Internet of Things through wireless sensor networks

Author:

Yu Xiang1,Lu Hui2ORCID,Yang Xianfei1,Chen Ying1,Song Haifeng1,Li Jianhua1,Shi Wei3

Affiliation:

1. School of Electronics and Information Engineering, Taizhou University, Taizhou, China

2. Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China

3. School of Information Technology, Carleton University, Ottawa, ON, Canada

Abstract

With the widespread propagation of Internet of Things through wireless sensor networks, massive amounts of sensor data are being generated at an unprecedented rate, resulting in very large quantities of explicit or implicit information. When analyzing such sensor data, it is of particular importance to detect accurately and efficiently not only individual anomalous behaviors but also anomalous events (i.e. patterns of behaviors). However, most previous work has focused only on detecting anomalies while generally ignoring the correlations between them. Even in approaches that take into account correlations between anomalies, most disregard the fact that the anomaly status of sensor data changes over time. In this article, we propose an unsupervised contextual anomaly detection method in Internet of Things through wireless sensor networks. This method accounts for both a dynamic anomaly status and correlations between anomalies based contextually on their spatial and temporal neighbors. We then demonstrate the effectiveness of the proposed method in an anomaly detection model. The experimental results show that this method can accurately and efficiently detect not only individual anomalies but also anomalous events.

Funder

national basic research program of china

Science and Technology Project of Taizhou City

National Natural Science Foundation of China

National Arts Youth Fund

Guangdong Province Key Area R&D Program of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3