Reflector-aided direct locations of multiple signals in the presence of small reflector position biases

Author:

Yin Jiexin12,Wang Ding12ORCID,Wu Ying12,Wu Zhidong12

Affiliation:

1. National Digital Switching System Engineering and Technology Research Center, Zhengzhou, P.R. China

2. Zhengzhou Information Science and Technology Institute, Zhengzhou, P.R. China

Abstract

Direct position determination (DPD) is a single-step method that localizes transmitters from sensor outputs without computing intermediate parameters. It outperforms conventional two-step localization methods, especially under low signal-to-noise ratio conditions. This article proposes a reflector-aided DPD algorithm for multiple signals of known waveforms received by an array observer. In previous studies, reflector-aided localization has always required very precise locations of reflectors. Therefore, the localization performance depends sensitively on accurately knowing each reflector position. This study considers the presence of small biases in reflector locations. To make the problem tractable, we simplify the signal model through an approximation using the first-order Taylor expansion and then directly localize multiple sources in a decoupled manner. Unlike most DPDs that presume noise is spatially uncorrelated, our study imposes no restriction on the correlation structure of noise, allowing this algorithm to be used in more general scenarios. In addition, we derive the Cramér–Rao bound expression and perform an analysis of the direct locations of multiple signals when the reflector positions are assumed accurate but in fact have small biases. Simulation results corroborate the theoretical results and a good localization performance of the proposed algorithm in the presence of small reflector position biases.

Funder

China Postdoctoral Science Foundation

Self-Topic Foundation of Information Engineering University

National Natural Science Foundation of China

Outstanding Youth Foundation of Information Engineering University

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3