Photoplethysmography based psychological stress detection with pulse rate variability feature differences and elastic net

Author:

Li Fenghua12,Xu Peida3,Zheng Shichun12,Chen Wenfeng4,Yan Yang12,Lu Suo12,Liu Zhengkui1

Affiliation:

1. Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People’s Republic of China

2. University of Chinese Academy of Sciences, Beijing, People’s Republic of China

3. Huawei Device (Dongguan) Co., Ltd., Shenzhen, People’s Republic of China

4. State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, People’s Republic of China

Abstract

Detecting psychological stress in daily life is useful to stress management. However, existing stress-detection models with only heartbeat/pulse input are limited in prediction output granularity, and models with multiple prediction levels output usually require additional bio-signal other than heartbeat, which may increase the number of sensors and be wearable unfriendly. In this study, we took a novel approach of incremental pulse rate variability and elastic-net regression in predicting mental stress. Mental arithmetic task paradigm was used during the experiments. A total of 178 participants involved in the model building, and the model was verified with a group of 29 participants in the laboratory and 40 participants in a 14-day follow-up field test. The result showed significant median correlations between self-report and model-prediction stress levels (cross-validation: r = 0.72 (p < 0.0001), laboratory verification: r = 0.70 (p < 0.0001), field test r = 0.56 (p < 0.0001)) with fine granularity ratings of 0–7 float numbers. The correct prediction took 86%–91% of the testing samples with error standard deviation of 0.68–0.81 in the label space of 14. By simplifying the process of prediction with a perspective of stress difference and handling the collinearity among pulse rate variability features with elastic net, we successfully built a stress prediction model with only pulse rate variability input source, fine granularity output and portable friendly sensor.

Funder

Shenzhen Science and Technology Innovation Commission

Huawei Technologies Co., Ltd.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3