Efficient topology control for time-varying spacecraft networks with unreliable links

Author:

Zhang Wei1ORCID,Ma Hong1,Wu Tao1,Shi Xueshu1,Jiao Yiwen1

Affiliation:

1. Department of Electronic and Optical Engineering, Space Engineering University, Beijing, China

Abstract

In spacecraft networks, the time-varying topology, intermittent connectivity, and unreliable links make management of the network challenging. Previous works mainly focus on information propagation or routing. However, with a large number of nodes in the future spacecraft networks, it is very crucial regarding how to make efficient network topology controls. In this article, we investigate the topology control problem in spacecraft networks where the time-varying topology can be predicted. We first develop a model that formalizes the time-varying spacecraft network topologies as a directed space–time graph. Compared with most existing static graph models, this model includes both temporal and spatial topology information. To capture the characteristics of practical network, links in our space–time graph model are weighted by cost, efficiency, and unreliability. The purpose of our topology control is to construct a sparse (low total cost) structure from the original topology such that (1) the topology is still connected over space–time graph; (2) the cost efficiency ratio of the topology is minimized; and (3) the unreliability parameter is lower than the required bound. We prove that such an optimization problem is NP-hard. Then, we provide five heuristic algorithms, which can significantly maintain low topology cost efficiency ratio while achieving high reliable connectivity. Finally, simulations have been conducted on random space networks and hybrid low earth orbit/geostationary earth orbit satellite-based sensor network. Simulation results demonstrate the efficiency of our model and topology control algorithms.

Funder

Innovative Foundation for Young Scholars of Space Engineering University

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3