A novel signal detection algorithm of multiple-input multiple-output Vertical-Bell Laboratories Layered Space-Time for underwater acoustic networks based on the improved minimum mean square error

Author:

Zhao Gaoli12ORCID,Wang Jianping12ORCID,Song Junping1,Chen Wei2

Affiliation:

1. School of Information Engineering, Henan Institute of Science and Technology, Xinxiang, China

2. School of Information Engineering, Wuhan University of Technology, Wuhan, China

Abstract

Multiple-input multiple-output is a commonly used technology supporting for high-rate transmission over frequency-selective fading channels with multiple antennas. Vertical-Bell Laboratories Layered Space-Time is a detection method of a multiple-input multiple-output system, which establishes a direct correspondence between antennas and layers. Studies demonstrate that multiple-input multiple-output Vertical-Bell Laboratories Layered Space-Time is a meaningful way for underwater acoustic networks of high performance. However, considering the hardware constraints and energy consumption, achieving a trade-off between the bit error ratio and complexity is a crucial issue for underwater acoustic networks of multiple-input multiple-output Vertical-Bell Laboratories Layered Space-Time systems. This article proposes a novel signal detection algorithm of multiple-input multiple-output Vertical-Bell Laboratories Layered Space-Time. First, we address the unitary matrix of the underwater acoustic channel by LDLH decomposition. Second, we order the detection sequence based on the permutation matrix. Third, we detail the implementation of interference cancelation and slice processing. Finally, we perform experiments for comparing the bit error ratio, energy consumption, processing delay, and complexity of the proposed algorithm with zero-forcing Vertical-Bell Laboratories Layered Space-Time, minimum mean square error Vertical-Bell Laboratories Layered Space-Time, and maximum likelihood Vertical-Bell Laboratories Layered Space-Time. Results indicate that our algorithm maintains bit error ratio and the processing delay to that of maximum likelihood Vertical-Bell Laboratories Layered Space-Time algorithm. However, it reduces the energy consumption, which achieves a good trade-off between performance and complexity. This work supports on constructing underwater acoustic networks of multiple-input multiple-output Vertical-Bell Laboratories Layered Space-Time system.

Funder

national natural science foundation of china

key scientific research project of colleges and universities in henan province

the Young Scholar Training Program of Higher Education in Henan Province

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3