ISEE: Industrial Internet of Things perception in solar cell detection based on edge computing

Author:

Dong Meiya1ORCID,Zhao Jumin1,Li Deng-ao1,Zhu Biaokai2,An Sihai3,Liu Zhaobin4

Affiliation:

1. College of Information and Computer, Taiyuan University of Technology, Taiyuan, China

2. Network Security Department, Shanxi Police College, Taiyuan, China

3. Engineering Department, GengDan Institute of Beijing University of Technology, Beijing, China

4. School of Computer engineering, Suzhou Vocational University, Suzhou, China

Abstract

The photovoltaic industry is a strategic and sunrise industry with international competitive advantages. Driven by policy guidance and market demand, the new energy industry represented by the photovoltaic industry has been a significant emerging industry in developing the national economy and people’s livelihood. Stable photovoltaic power generation capacity supply is a critical issue in the photovoltaic industry. With the popularization of industrial Internet technology and Internet of things technology, more and more academic and industrial circles begin to introduce new technologies to provide the latest research results and solutions for the photovoltaic industry. Electroluminescence is a standard detection method for photovoltaic production in the application of solar energy production. This method uses human vision to detect whether the solar silicon unit is defective. In this article, due to the three core pain points in traditional electroluminescence detection: low efficiency of offline identification, low accuracy and accuracy of data detection, and no online diagnosis and prediction, we carry out ISEE research based on edge computing unit. ISEE uses the edge device to collect the real-time video image of the solar panel through the camera. Then it uses the powerful neural network processing unit module of the edge computing unit, combined with the convolutional neural network algorithm transplanted to the edge, to detect the defects of solar panels in real time. It completes the research on intelligent detection of photovoltaic power generation production defects based on the Internet of Things. After a large number of experimental design verification, ISEE effectively improves the automation degree and identification accuracy in the production and detection process of solar photovoltaic cells and reduces the cost of operation and maintenance. The accuracy rate reaches 93.75%, which has significant theoretical research significance and practical application value.

Funder

National Major Scientific Research Instrument Development Project

National Key R&D Project

The General Object of National Natural Science Foundation

Shanxi Province key technology and Generic technology R & D project

NSFC program

Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3