Fuzzy-logic-based data-differentiated service supported routing protocol for emergency communication networks in underground mines

Author:

Jiang Haifeng1ORCID,Han Guangzhi1,Wang He1,Li Xinping1,Zhang Guopeng1

Affiliation:

1. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China

Abstract

Hybrid wireless mesh networks are suitable to construct emergency communication networks after disasters in underground mines. The routing decision in emergency scene is more difficult to give an accurate mathematical description due to the constraints of various data types, different data transmission requirements, and multi-parameters. Based on the fuzzy decision theory, this article has proposed a fuzzy-logic-based data-differentiated service supported routing protocol. Through the use of the adaptive fuzzy decision system, fuzzy-logic-based data-differentiated service supported routing protocol can provide data-differentiated services and make optimized routing decisions to satisfy the transmission requirements of different data types. In addition, a path soft handoff strategy has been proposed to maintain continuous data transmission when the path quality deteriorates. Based on NS2, we set three transmission scenarios (transmitting emergency data, regular data, or mixed data) to test the performances of fuzzy-logic-based data-differentiated service supported routing protocol, ad hoc on-demand distance vector, FUZZY-ad hoc on-demand distance vector, and multi-criteria routing metric. The results show that the fuzzy-logic-based data-differentiated service supported routing protocol has a higher delivery ratio and lower end-to-end delay when transmitting emergency data. When transmitting regular data, fuzzy-logic-based data-differentiated service supported routing protocol has achieved higher throughput and longer network lifetime than that of similar algorithms.

Funder

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3