Cloud-based radio frequency identification authentication protocol with location privacy protection

Author:

Dong Qingkuan1,Chen Mengmeng1,Li Lulu1,Fan Kai2

Affiliation:

1. State Key Laboratory of Integrated Services Network, Xidian University, Xi’an, P. R. China

2. School of Cyber Engineering, Xidian University, Xi’an, P. R. China

Abstract

With the development of the Internet of things and cloud storage, a large number of objects access to the Internet through radio frequency identification technology, cloud-based radio frequency identification system attracts more attention because it can reduce the costs of system maintenance by renting the cloud storage service on demand. Especially, it is very suitable for the small- and medium-sized enterprises. However, the security and privacy issues of the cloud-based radio frequency identification system are more serious than traditional radio frequency identification systems. The link between the reader and the cloud is no longer secure, and the cloud service provider is not trusted. Both the location privacy of the reader and the data privacy of the radio frequency identification system are not able to be exposed to the cloud service provider. In this article, a cloud-based radio frequency identification authentication protocol is proposed. It considers not only the mutual authentication between the reader and the tag, but also the security of data transmission between the reader and the cloud database. In particular, in order to solve the reader’s location privacy problem, the proposed scheme introduces MIPv6 network framework without adding additional infrastructure. The experimental verification with AVISPA tool shows that the protocol satisfies the mutual authentication property. Compared with other cloud-based schemes, the proposed protocol has obvious advantages in deployment cost, scalability, real-time authentication, and the tag’s computational complexity.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new lattice-based authentication scheme for IoT;Journal of Information Security and Applications;2022-02

2. IoT security and privacy concerns in cloud ecosystem;INDUSTRIAL, MECHANICAL AND ELECTRICAL ENGINEERING;2022

3. FPGA Implementation of ECC Enabled Multi-factor Authentication (E-MFA) Protocol for IoT Based Applications;Communications in Computer and Information Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3