Identification of crack development in granite under triaxial compression based on the acoustic emission signal

Author:

Wang Tianzuo12,Wang Linxiang1ORCID,Xue Fei12,Xue Mengya1

Affiliation:

1. Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, College of Civil Engineering, Shaoxing University, Shaoxing, China

2. Zhejiang Collaborative Innovation Center for Prevention and Control of Mountain Geologic Hazards, Shaoxing, China

Abstract

To explore the development mechanism of cracks in the process of rock failure, triaxial compression tests with simultaneous acoustic emission monitoring were performed on granite specimens using the MTS rock mechanics test system. The frequency-domain information of the acoustic emission signal was obtained by the fast Fourier transform. The Gutenberg–Richter law was used to calculate the acoustic emission signals and obtain the b-value dynamic curve in the loading process. Combined with the stiffness curve of granite specimens and acoustic emission signal in the time domain and frequency domain, the crack development characteristics in different stages were analyzed. The results showed that the acoustic emission signals of granite samples under triaxial compression can be divided into four stages: quiet period 1, active stage 1, quiet period 2, and active stage 2. b-value attained its maximum value in the active phase 2 when it is close to the sample loss, and then drops rapidly, which means the propagation of cracks and the formation of large cracks. The acoustic emission signal’s dominant frequency was not more than 500 kHz, mostly concentrated in the medium-frequency band (100–200 kHz), which accounted for more than 80%. The proportion of signals in each frequency band can reflect the distribution of the three kinds of cracks, while the change in low-frequency signals can reflect the breakthrough of microcracks and the formation time of macrocracks in granite samples. By fully analyzing the characteristics of acoustic emission signals in the time domain and frequency domain, the time and conditions of producing large cracks can be determined accurately and efficiently.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3