Wireless rechargeable sensor networks with separable charger array

Author:

Xu Chengjie1,Cheng Rei-Heng2,Wu Tung-Kuang3

Affiliation:

1. Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huai’an, P.R. China

2. Department of Applied Mobile Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan, R.O.C.

3. Department of Information Management, National Changhua University of Education, Changhua, Taiwan, R.O.C.

Abstract

Wireless charging technology has been developing rapidly in recent years and has been used to deliver power and provide a new source of energy for wireless rechargeable sensor networks. With current solutions, charging is usually done by a mobile vehicle equipped with a charger, which needs to be waiting on site until the sensor is properly charged. It is possible that some sensors drain their power while the charging vehicle is serving the other. Accordingly, we proposed a solution that uses a single charging vehicle equipped with multiple battery cells, which we call the separable charging array. The battery cell can be unloaded on site with sensor, while the vehicle carries on its mission. A scheduling algorithm, a revised earliest deadline first algorithm, is proposed to work with this new model. In this study, we will demonstrate that the idea of equipping charging vehicle with separable charger array is feasible. In addition, our simulations indicate that the revised earliest deadline first scheduling algorithm does improve the earliest deadline first scheduling algorithm significantly with only minor overhead in scheduling computation time and very few extra chargers. Some modified variations of the proposed revised earliest deadline first algorithm will also be discussed and evaluated.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3