Tracking objects using Grassmann manifold appearance modeling based on wireless multimedia sensor networks

Author:

Xie Yinghong12,Yu Xiaosheng3,Wu Chengdong3

Affiliation:

1. College of Information Engineering, Shenyang University, Shenyang, China

2. School of Electronic Information Engineering, Tianjin University, Tianjin, China

3. Faculty of Robot Science and Engineering, Northeastern University, Shenyang, China

Abstract

Visual object tracking methods based on wireless multimedia sensor network is one of the research hotspots while the present linear method for processing feature vectors often lead to the tracking drift when tracking object with significant nonplanar pose variations through wireless sensor networks. In this article, we propose a novel nonlinear algorithm for tracking significant deformable objects. The proposed tracking scheme has two filters. On one hand, considering that Grassmann manifold is one of entropy manifold in Lie group manifold, which can describe and process the data of appearance feature more accurately, one filter is designed on it, to estimate the object appearance, by making full use of the transformation relationship between the point on manifold and its corresponding point on tangent space. On the other hand, considering that the process of objects imaging is essentially projection transformation process, the other filter is designed on projection transformation (SL(3)) group, describing the geometric deformation of the objects. The two filters execute alternatively to mitigate tracking drift. Extensive experiments prove that the proposed method can realize stable and accurate tracking for targets with significant geometric deformation, even obscured and illumination changes.

Funder

the Normal Program of Education Commission of Liaoning Province of China

Research Funds by Shenyang City

Fundamental Research Funds for the Central Universities

the National Natural Science Foundation of China

Doctor Startup Fund Program

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3