Affiliation:
1. School of Electronics and Information, Northwestern Polytechnical University, Xi’an, China
Abstract
The rapid growth of mobile data traffic demand will cause congestion to the future communication network. The cache-enabled device-to-device communication has been proven to effectively enhance the performance of wireless communication networks. This article investigates the caching deployment problem from the energy efficiency in the cache-enabled device-to-device networks. According to the random geometry theory modeling, the closed form expression of energy efficiency is derived, which measures the average number of successful transmitted file bits per unit time and per unit power consumption. And then we establish an optimization problem to maximize energy efficiency. As the formulated optimization problem is a multiple-ratio fractional programming problem that cannot be solved conveniently, we propose a quadratic transformation method to nest in the energy efficiency maximization problem. To tackle this problem, an iterative optimization algorithm is proposed to optimize the caching policy and network energy efficiency. The simulation results demonstrate that the proposed policy can achieve higher energy efficiency and hit probability in the cache-enabled device-to-device network.
Funder
northwestern polytechnical university
National Natural Science Foundation of China
Subject
Computer Networks and Communications,General Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献