Worst-case energy consumption minimization based on interference analysis and bank mapping in multicore systems

Author:

Gan Zhihua12,Gu Zhimin1,Tan Hai1,Zhang Mingquan1,Zhang Jizan1

Affiliation:

1. School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China

2. School of Software, Henan University, Kaifeng, China

Abstract

Energy is a scarce resource in real-time embedded systems due to the fact that most of them run on batteries. Hence, the designers should ensure that the energy constraints are satisfied in addition to the deadline constraints. This necessitates the consideration of the impact of the interference due to shared, low-level hardware resources such as the cache on the worst-case energy consumption of the tasks. Toward this aim, this article proposes a fine-grained approach to analyze the bank-level interference (bank conflict and bus access interference) on real-time multicore systems, which can reasonably estimate runtime interferences in shared cache and yield tighter worst-case energy consumption. In addition, we develop a bank-to-core mapping algorithm for reducing bank-level interference and improving the worst-case energy consumption. The experimental results demonstrate that our approach can improve the tightness of worst-case energy consumption by 14.25% on average compared to upper-bound delay approach. The bank-to-core mapping provides significant benefits in worst-case energy consumption reduction with 7.23%.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3