Affiliation:
1. Federal University of Amazonas (UFAM), Manaus, Brazil
2. Ontario Tech University (UOIT), Oshawa, ON, Canada
Abstract
In the context of smart home, it is very important to identify usage patterns of Internet of things (IoT) devices. Finding these patterns and using them for decision-making can provide ease, comfort, practicality, and autonomy when executing daily activities. Performing knowledge extraction in a decentralized approach is a computational challenge considering the tight storage and processing constraints of IoT devices, unlike deep learning, which demands a massive amount of data, memory, and processing capability. This article describes a method for mining implicit correlations among the actions of IoT devices through embedded associative analysis. Based on support, confidence, and lift metrics, our proposed method identifies the most relevant correlations between a pair of actions of different IoT devices and suggests the integration between them through hypertext transfer protocol requests. We have compared our proposed method with a centralized method. Experimental results show that the most relevant rules for both methods are the same in 99.75% of cases. Moreover, our proposed method was able to identify relevant correlations that were not identified by the centralized one. Thus, we show that associative analysis of IoT device state change is efficient to provide an intelligent and highly integrated IoT platform while avoiding the single point of failure problem.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Samsung
Fundação de Amparo à Pesquisa do Estado do Amazonas
Natural Sciences and Engineering Research Council of Canada
Subject
Computer Networks and Communications,General Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献