DARE: A decentralized association rules extraction scheme for embedded data sets in distributed IoT devices

Author:

Alencar Márcio1ORCID,Barreto Raimundo1,Fernandes Horácio1,Souto Eduardo1,Pazzi Richard2

Affiliation:

1. Federal University of Amazonas (UFAM), Manaus, Brazil

2. Ontario Tech University (UOIT), Oshawa, ON, Canada

Abstract

In the context of smart home, it is very important to identify usage patterns of Internet of things (IoT) devices. Finding these patterns and using them for decision-making can provide ease, comfort, practicality, and autonomy when executing daily activities. Performing knowledge extraction in a decentralized approach is a computational challenge considering the tight storage and processing constraints of IoT devices, unlike deep learning, which demands a massive amount of data, memory, and processing capability. This article describes a method for mining implicit correlations among the actions of IoT devices through embedded associative analysis. Based on support, confidence, and lift metrics, our proposed method identifies the most relevant correlations between a pair of actions of different IoT devices and suggests the integration between them through hypertext transfer protocol requests. We have compared our proposed method with a centralized method. Experimental results show that the most relevant rules for both methods are the same in 99.75% of cases. Moreover, our proposed method was able to identify relevant correlations that were not identified by the centralized one. Thus, we show that associative analysis of IoT device state change is efficient to provide an intelligent and highly integrated IoT platform while avoiding the single point of failure problem.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Samsung

Fundação de Amparo à Pesquisa do Estado do Amazonas

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Demonstration of Integration of Blockchain in IoT;2021 4th International Conference on Recent Trends in Computer Science and Technology (ICRTCST);2022-02-11

2. The impact of applying knowledge in the technological pillars of Industry 4.0 on supply chain performance;Kybernetes;2021-11-25

3. SERDP: Signature‐based and energy‐efficient relay discovery protocol for Internet of Things in cellular networks;International Journal of Communication Systems;2021-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3