Affiliation:
1. Department of Multimedia Engineering, National University of Chonnam, Yeosu, Republic of Korea
2. Department of Computer Education, National University of Sunchon, Sunchon, Republic of Korea
Abstract
One method to create a high-performance computer is to use parallel processing to connect multiple computers. The structure of the parallel processing system is represented as an interconnection network. Traditionally, the communication links that connect the nodes in the interconnection network use electricity. With the advent of optical communication, however, optical transpose interconnection system networks have emerged, which combine the advantages of electronic communication and optical communication. Optical transpose interconnection system networks use electronic communication for relatively short distances and optical communication for long distances. Regardless of whether the interconnection network uses electronic communication or optical communication, network cost is an important factor among the various measures used for the evaluation of networks. In this article, we first propose a novel optical transpose interconnection system–Petersen-star network with a small network cost and analyze its basic topological properties. Optical transpose interconnection system–Petersen-star network is an undirected graph where the factor graph is Petersen-star network. OTIS–PSN n has the number of nodes 102n, degree n+3, and diameter 6 n − 1. Second, we compare the network cost between optical transpose interconnection system–Petersen-star network and other optical transpose interconnection system networks. Finally, we propose a routing algorithm with a time complexity of 6 n − 1 and a one-to-all broadcasting algorithm with a time complexity of 2 n − 1.
Subject
Computer Networks and Communications,General Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献