High-density data transmission and scheduling method in wireless sensor networks based on Wi-Fi

Author:

Zhang Yajun123ORCID,Qiu Gang34,Liu Meng1,Wang Hongjun1

Affiliation:

1. School of Information Science and Engineering, Shandong University, Jinan, China

2. School of Software, Xinjiang University, Urumqi, China

3. Changji University, Changji, China

4. School of Software, Shandong University, Jinan, China

Abstract

In wireless sensor network, the storage amount of information is high, and the transmission and scheduling of control information is reasonable. The node communication model, network structure model, and energy consumption model are constructed. On this basis, the high-density data in wireless sensor network are scheduled to optimize the time for nodes to perform tasks. The nodes in the network are fully scheduled to control the generation time of packets in the network and the generation time of packets in the network. Experimental results show that in different iterations, the proposed method has lower node delay and node energy consumption, with values less than 0.2 and 2, respectively, and the maximum data fusion quality can reach 98, with high fusion benefits, so as to improve the transmission and scheduling efficiency and quality of high-density data in wireless sensor network.

Funder

national basic research program of china

department of education, xinjiang uygur autonomous region

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fractals for Internet of Things Network Structure Planning;International Journal of Information Security and Privacy;2022-07-13

2. Multi-Channel Data Stream Transmission Method of Internet of Things in Power Systems (IOTIPS) Based on Big Data Analysis;Journal of Nanoelectronics and Optoelectronics;2021-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3