A novel approach to monitor glucose metabolism using stable isotopically labelled glucose in longitudinal studies in mice

Author:

Van Dijk T H12,Laskewitz A J32,Grefhorst A4,Boer T S1,Bloks V W3,Kuipers F13,Groen A K13,Reijngoud D J1

Affiliation:

1. Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands;

2. Both authors contributed equally

3. Department of Pediatrics, University of Groningen, CMC IV Room Y2.115, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands;

4. Department of Internal Medicine, Erasmus MC Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands

Abstract

The aetiology of insulin resistance is still an enigma. Mouse models are frequently employed to study the underlying pathology. The most commonly used methods to monitor insulin resistance are the HOMA-IR, glucose or insulin tolerance tests and the hyperinsulinemic euglycaemic clamp (HIEC). Unfortunately, these tests disturb steady state glucose metabolism. Here we describe a method in which blood glucose kinetics can be determined in fasted mice without noticeably perturbing glucose homeostasis. The method involves an intraperitoneal injection of a trace amount of [6,6-2H2]glucose and can be performed repeatedly in individual mice. The validity and performance of this novel method was tested in mice fed on chow or high-fat diet for a period of five weeks. After administering the mice with [6,6-2H2]glucose, decay of the glucose label was followed in small volumes of blood collected by tail tip bleeding during a 90-minute period. The total amount of blood collected was less than 120 μL. This novel approach confirmed in detail the well-known increase in insulin resistance induced by a high-fat diet. The mice showed reduced glucose clearance rate, and reduced hepatic and peripheral insulin sensitivity. To compensate for this insulin resistance, β-cell function was slightly increased. We conclude that this refinement of existing methods enables detailed information of glucose homeostasis in mice. Insulin resistance can be accurately determined while mechanistic insight is obtained in underlying pathology. In addition, this novel approach reduces the number of mice needed for longitudinal studies of insulin sensitivity and glucose metabolism.

Publisher

SAGE Publications

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3