Exploring the advantages and limitations of sampling methods commonly used in research facilities for zebrafish health inspections

Author:

Marancik David1ORCID,Collins Jason2,Afema Josephine3,Lawrence Christian4

Affiliation:

1. Department of Pathobiology, St. George’s University School of Veterinary Medicine, Grenada

2. Fish Vet Group, USA

3. Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, USA

4. Aquatic Resources Program, Boston Children’s Hospital, USA

Abstract

Examining zebrafish populations for the presence of disease is an integral component of managing fish health in research facilities. Currently, many different strategies are used for zebrafish fish health inspections, which is a scenario that may result in subjective and biased diagnostic evaluations. The goal of this study was to compare the success of pathogen detection between a sample size of randomly selected fish ( n = 60) that provides 95% confidence in pathogen detection based on a presumed pathogen prevalence level ≥5%, and other subpopulations and sample numbers commonly submitted for diagnostic testing within a 1000 tank, 30,000 fish, recirculating research system. This included fish collected from a sump tank ( n = 53), sentinel fish ( n = 11), and fish that were found moribund or freshly dead ( n = 18). Additionally, five fish from each subpopulation were collected for histopathologic examination. A second study used retrospective data to examine pathogen distribution between systems ( n = 2−5) in multi-system facilities ( n = 5) using a sample size of 60 fish per system. For the pathogens detected, results supported the use of representative sample numbers rather than smaller numbers of populations considered more at risk. The exception to this is for the moribund/mortality group, which may be a resource for targeted surveillance of select pathogens. Each system within multi-system facilities should be considered separate units in terms of fish health inspections and biosecurity. Development of these evidence-based standards for fish health inspections in zebrafish systems enhances fish welfare, provides identification of potentially zoonotic pathogens, and ensures scientific integrity and reproducibility of research results.

Publisher

SAGE Publications

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3