Affiliation:
1. Gary E. Ritchie, MS, CNIRS News Editor
Abstract
NIR process monitoring and NIR hyperspectral video generates a deluge of non-selective spectral data, information-rich but per se useless. This paper demonstrates how interpretable data modelling can lead to simpler and better use of such NIR Big Data: A set of simple powder mixtures of the main constituents in wheat flour were measured by NIR transmission under different measurement conditions. Their absorbance spectra were submitted to multivariate calibration for predicting the protein content, by standard chemometric calibration by PLS regression. A reasonable calibration model was obtained, but it was unexpectedly complex and not robust. However, closer inspection the PLS regression subspace showed a surprising structure. This allowed us to identify the problem: Non-additive, strongly overlapping light scattering and light absorption effects in the NIR absorbance spectra. Based on this insight, a pragmatic, but causal preprocessing model was set up and iteratively optimized for predictive ability. This nonlinear optimized extended signal correction (OEMSC) separated and quantified the main physical and chemical sources of variation in the spectra. The preprocessing greatly simplified the NIR spectra and their quantitative calibration and prediction.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献