Immunocytochemical Detection of Ornithine Decarboxylase

Author:

Schipper Raymond G.1,Romain Nadine2,Otten Adrianus A.1,Tan Jing3,Lange Will P.1,Verhofstad Albert A. J.1

Affiliation:

1. Department of Pathology, University Hospital Nijmegen, Nijmegen, The Netherlands

2. IEEM-NMC Biochemistry Lab, Presbyterian Hospital of Dallas, Dallas, Texas

3. Biology Convention Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas

Abstract

Ornithine decarboxylase (ODC), a regulatory enzyme of polyamine biosynthesis, is involved in cell growth and differentiation. Lack of information about the exact cellular and subcellular localization of ODC is one of the main obstacles to precise interpretation of the biological roles of the ODC/polyamine system. Here we describe the development and optimization of an immunocytochemical method to detect ODC in cells and tissues. For this purpose a monoclonal antibody (MP16-2) against a defined epitope of ODC protein was developed. Specificity of the antibody for ODC was substantiated by Western blotting and ELISA analysis using cell and tissue homogenates. In cultured cells, optimal staining results were obtained after fixation with crosslinking fixatives followed by permeabilization with methanol. In rat tissues, ODC immunoreactivity was best preserved in paraffin sections fixed with Bouin's fixative. Antigen retrieval using SDS and citrate buffer substantially increased ODC immunostaining and decreased background staining. Localization studies of ODC in different cell lines showed that strongest staining for ODC was found in the nucleoplasm of mitotic cells, whereas confluent cells showed moderate perinuclear staining. Immunocytochemical studies of various rat tissues showed high cytoplasmic immunostaining of ODC in epithelial cells of kidney, prostate, and adrenal medulla of testosterone-treated rats, in glandular epithelium of small intestine, and in pancreas of neonatal and adult rats.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3