Chondrocyte Differentiation in a Rat Mesenchymal Cell Line

Author:

Lunstrum Gregory P.1,Keene Douglas R.,Weksler Nicole B.,Cho Yoon-Jae,Cornwall Marcus,Horton William A.1

Affiliation:

1. Research Department, Shriners Hospital for Children, and Department of Medical Genetics, Oregon Health Sciences University, Portland, Oregon

Abstract

We used a combination of morphologic and histochemical methods to demonstrate that rat calvaria-derived mesenchymal cells, RCJ 3.1C5.18, in culture progress through the differentiation pathway exhibited by chondrocytes in the endochondral growth plate. The cells were grown either as monolayer or suspension cultures. Subconfluent monolayer cultures did not express markers typical of chondrocyte phenotypes. However, after reaching confluency the cells formed nodules of chondrocytic cells separated by cartilage-appearing matrix and encapsulated by fibroblast-like cells. Suspension culture produced cell aggregates with similar characteristics. Matrix in both the nodules and aggregates stained for collagen Types II and XI and aggrecan, and some cells displayed a distinctive pericellular matrix that stained for Type X collagen. Mineralization was evident in older cultures. By electron microscopy, most cells in the aggregates appeared as typical chondrocytes. However, some larger cells were surrounded by a “mat” of matrix comprised of hexagonal arrays of dense nodules interconnected by a filamentous network. Immunogold localization confirmed the presence of collagen Type X in this matrix. Analysis of markers of chondrocyte differentiation and terminal differentiation over time showed that these markers were acquired sequentially over 2 weeks of culture. This model system will be useful to study the regulation of various steps in the chondrocyte differentiation pathway.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3