Chromatin Condensation in Erythropoiesis Resolved by Multipixel Spectral Imaging: Differentiation Versus Apoptosis

Author:

Rothmann Chana1,Cohen Amos M.1,Malik Zvi1

Affiliation:

1. Life Sciences Department, Bar Ilan University, Ramat-Gan, Israel (CR,ZM), and Hematology Unit, Rabin Medical Center, Golda Campus, Petach Tiqua, Israel (AMC)

Abstract

Chromatin condensation and nuclear organization of May–Grunwald–Giemsa (MGG)-stained normal erythropoietic bone marrow cells and apoptotic red cell precursors were resolved by spectral bio-imaging. Multipixel spectra were obtained from single cells displaying a range of wavelengths of both transmitted and absorbed light. Two groups of spectra, of low- and high-intensity transmitted light, were revealed in the nuclei of each cell. The absorbance spectra served for the reconstruction of “absorbance images” depicting the affinity of MGG stain for the chromatin of proerythroblasts and of basophilic, polychromatic, and orthochromatic normoblasts. The localization of different spectral components in the nuclei was resolved employing two mathematical methods, spectral similarity mapping and principal component analysis. Novel structures of high symmetry revealing windmill-like organization were detected in basophilic, polychromatic, and orthochromatic normoblast cells. Matching structures were detected in apoptotic normoblasts obtained from an agnogenic myeloid metaplasia patient. Apoptosis was associated with a gradual breakdown of the ordered arrays in the nucleus. We propose that DNA cleavage may lead to fragmentation of the symmetrical windmill-like superstructure of the basic nuclear domains. (J Histochem Cytochem 45:1097–1108, 1997)

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3