Co-localization of Dystrophin and β-Dystroglycan Demonstrated in En Face View by Double Immunogold Labeling of Freeze-fractured Skeletal Muscle

Author:

Cullen Michael J.1,Walsh John1,Stevenson Shirley A.2,Rothery Stephen2,Severs Nicholas J.2

Affiliation:

1. Department of Neurobiology, The Medical School, University of Newcastle upon Tyne

2. Imperial College School of Medicine at National Heart and Lung Institute, London, United Kingdom

Abstract

SUMMARY An absence of dystrophin causes Duchenne muscular dystrophy, but the precise mechanism underlying necrosis of the muscle cells is still unclear. Dystrophin and β-dystroglycan are components of a complex of at least nine proteins, the dystrophin-glycoprotein complex (DGC), that links the membrane cytoskeleton to extracellular elements in skeletal and cardiac muscle. Biochemical studies indicate that dystrophin is bound to other components of the DGC via β-dystroglycan, which suggests that the distribution of these two proteins should be almost identical. In this study, therefore, we examined the spatial relationship between dystrophin and β-dystroglycan with a range of different imaging techniques to investigate the extent of the predicted co-localization. We used (a) double immunogold fracture-label, a freeze-fracture cytochemical technique that allows high-resolution face-on views of labeled membrane components in thin sections and in platinum-carbon replicas, (b) double immunogold labeling of cryosections and (c) confocal microscopy. Both dystrophin and β-dystroglycan were found over the entire fiber surface and, when labeled singly, the nearest neighbor spacing of labeling sites for the two proteins was indistinguishable. With double labeling, very close co-localization could be demonstrated. The results support the conclusion that dystrophin and β-dystroglycan directly interact at the muscle plasma membrane.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3