Affiliation:
1. Departments of Oral Anatomy Kanagawa Dental College, Yokosuka, Japan
2. Departments of Endodontology and Periodontology, Kanagawa Dental College, Yokosuka, Japan
3. Departments of Hiroshima University School of Dentistry, Hiroshima, and Department of Oral Histology, Kanagawa Dental College, Yokosuka, Japan
Abstract
Rat ameloblastin is a recently cloned tooth-specific enamel matrix protein containing 422 amino acid residues. We investigated the expression of this protein during the matrix formation stage of the rat incisor immunohistochemically and immunochemically, using anti-synthetic peptide antibodies that recognize residues 27–47 (Nt), 98–107 (M-1), 224–232 (M-2), 386–399 (M-3), and 406–419 (Ct) of ameloblastin. Immunohistochemical preparations using antibodies Nt and M-1 stained the Golgi apparatus and secretory granules of the secretory ameloblast and the entire thickness of the enamel matrix. Only M-1 intensely stained the peripheral region of the enamel rods. Immunostained protein bands were observed near 65, 55, and below 22 kD. Immunohistochemical preparations using antibodies M-2 and Ct stained the Golgi apparatus and secretory granules of the ameloblast and the immature enamel adjacent to the secretion sites, but not deeper enamel layers. Immunostaining using M-2 and Ct revealed protein bands near 65 and 40–56 kD, and 65, 55, 48, 36, and 25 kD, respectively. M-3 stained the cis side of the Golgi apparatus but not the enamel matrix. This antibody recognized a protein band near 55 kD, but none larger. After brefeldin A treatment, immunoreaction of the 55-kD protein band intensified, and dilated cisternae of rER of the secretory ameloblast contained immunoreactive material irrespective of the antibodies used. These data indicate that ameloblastin is synthesized as a 55-kD core protein and then is post-translationally modified with O-linked oligosaccharides to become the 65-kD secretory form. Initial cleavages of the 65-kD protein generate N-terminal polypeptides, some of which concentrate in the prism sheath, and C-terminal polypeptides, which are rapidly degraded and lost from the enamel matrix soon after secretion.
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献