Transient Expression of Transglutaminase C During Prenatal Development of Human Muscles

Author:

Lee Suk K.1,Chi Je G.2,Park Sang C.3,Chung Soo I.4

Affiliation:

1. Department of Oral Pathology, Kangnung National University College of Dentistry

2. Department of Pathology, Seoul National University College of Medicine

3. Department of Biochemistry, Seoul National University College of Medicine

4. Mogam Biotechnology Research Institute, Yongin, Korea

Abstract

Tissue transglutaminase (TGase C, TGase II) is known to participate in cellular processes during morphogenesis, differentiation, and development of various prenatal tissues and organs. The expression of TGase C during myoblast proliferation and attachment to external laminae was examined by immunohistochemical (IH) localization at 5–12 weeks of developmental stages of prenatal human muscle in 23 embryos. IH detection using a monospecific antibody to TGase C showed a prominent expression of TGase C in muscle cells as stage- and spatial-specific patterns during an early embryonal period. The myoblasts of intervertebral, tongue, and limb muscles, attached to adjacent cartilaginous skeletons or fibrous fascia, showed a pronounced expression of TGase C at 5–6, 6–7, and 7–8 weeks after fertilization, respectively. The most intense activity of TGase C was observed in some cardiac myoblasts infiltrating into endocardial mesenchyme at 6–7 weeks after fertilization. Although weak staining was detected until 14 weeks after fertilization, the level of TGase C expression in all muscles was significantly decreased after 6–7 weeks, with the exception that the smooth muscle cells of blood vessels and gastrointestinal tract showed diffusely intense staining of TGase C between 5 and 12 weeks after fertilization. Western blotting analysis of the cellular extracts of pooled samples showed a single strong band at 80 kD at 6 weeks after fertilization. This band became weaker after 8–10 weeks of prenatal development. These findings of transient expression of TGase C, which coincides with the development of myoblast anchoring and differentiation, suggest that TGase C plays a role in myoblast attachment to the extracellular laminae during the early embryonal period.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3