The Cortactin-binding Postsynaptic Density Protein ProSAP1 in Non-neuronal Cells

Author:

Redecker Peter1,Gundelfinger Eckart D.1,Boeckers Tobias M.1

Affiliation:

1. Department of Anatomy 1, Medical School of Hannover, Hannover, Germany (PR); Leibniz Institute for Neurobiology, Magdeburg, Germany (EDG, TMB); and AG Molecular Neurobiology, Institute for Anatomy, Westfaelische Wilhelms-University, Muenster, Germany (TMB)

Abstract

Proline-rich synapse-associated protein-1 (ProSAP1) is a neuronal PDZ domain-containing protein that has recently been identified as an essential element of the postsynaptic density. Via its interaction with the actin-binding protein cortactin and its integrative function in the organization of neurotransmitter receptors, ProSAP1 is believed to be involved in the linkage of the postsynaptic signaling machinery to the actin-based cytoskeleton, and may play a role in the cytoskeletal rearrangements that underlie synaptic plasticity. As a result of our ongoing studies on the distribution and function of this novel PDZ domain protein, we now report that the expression of ProSAP1 is restricted neither to neurons and interneuronal junctions nor to the nervous system. Using immunohistochemical techniques in conjunction with specific antibodies, we found that, in the CNS, ProSAP1 can be detected in certain glial cells, such as ependymal cells, tanycytes, subpial/radial astrocytes, and in the choroid plexus epithelium. Moreover, our immunohistochemical analyses revealed the presence of ProSAP1 in endocrine cells of the adenohypophysis and of the pancreas, as well as in non-neuronal cell types of other organs. In the pancreas, ProSAP1 immunoreactivity was also localized in the duct system of the exocrine parenchyma. Our findings demonstrate that, in addition to neurons, ProSAP1 is present in various non-neuronal cells, in which it may play a crucial role in the dynamics of the actin-based cytoskeleton. (J Histochem Cytochem 49:639–648, 2001)

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3