Biochemical Properties and Cytochemical Localization of Ouabain-insensitive, Potassium-dependentp-Nitrophenylphosphatase Activity in Rat Atrial Myocytes

Author:

Zinchuk Vadim S.1,Kobayashi Toshihiro1,Saz Eva Garcia del1,Seguchi Harumichi1

Affiliation:

1. Department of Anatomy and Cell Biology, Kochi Medical School, Nankoku, Kochi, Japan

Abstract

Enzyme activity that represents ouabain-insensitive, potassium-dependent p-nitrophenylphosphatase (p-NPPase) was assessed in rat atrial myocytes by biochemical and cytochemical procedures. No activity was detected in parallel experiments with ventricular myocytes. Fixed tissues were incubated in a reaction medium containing Tricine buffer, p-nitrophenylphosphate (p-NPP), KCl, MgCl2, CaCl2, CeCl3, Triton X-100, levamisole, and ouabain. Final pH was adjusted to 7.5. Biochemical studies showed that accumulation of p-nitrophenol in the medium was increased proportionally in accordance with the amount of incubated tissue. This activity was optimal with incubation at pH 7.5 and in the presence of KCl. Approximately 70% of the enzyme was inhibited by 2 mM CeCl3. Electron microscopic observations revealed reaction product (RP) at sites of ouabain-insensitive, potassium-dependent p-NPPase activity as electron-dense precipitate localized at the inner surface of the plasma membrane and at the T-tubules of atrial myocytes. Control experiments indicated that the activity was strongly inhibited by sodium orthovanadate and was repressed by omeprazole and 1,3-dicyclohexylcarbodiimide. X-ray microanalysis confirmed the presence of cerium within the cytochemical RP. The ouabain-insensitive, K-dependent p-NPPase activity detected in the present study is considered to be an isoform of a P-type, H-transporting, K-dependent adenosine triphosphatase (H,K-ATPase).

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3