Intracellular Distribution of Oligonucleotides Delivered by Cationic Liposomes: Light and Electron Microscopic Study1

Author:

Lappalainen Katriina1,Miettinen Riitta2,Kellokoski Jari3,Jääskeläinen Ilpo4,Syrjänen Stina15

Affiliation:

1. MediCity Research Laboratory, University of Turku, Finland

2. Department of Neurology, University of Kuopio, Finland

3. Department of Pathology, University of Kuopio, Finland

4. Department of Pharmaceutical Technology, University of Kuopio, Finland

5. Department of Dentistry, University of Turku, Finland

Abstract

Synthesized oligonucleotides are used in anti-sense and anti-gene technology to control gene expression. Because cells do not easily take up oligonucleotides, cationic liposomes have been employed to facilitate their transport into cells. Athough cationic liposomes have been used in this way for several years, the precise mechanisms of the delivery of oligonucleotides into cells are not known. Because no earlier reports have been published on the liposomal delivery of oligonucleotides at the ultrastructural level, we performed a study, using electron microscopy, on the cellular uptake and intracellular distribution of liposomal digoxigenin-labeled oligodeoxynucleotides (ODNs) at several concentrations (0.1, 0.2, and 1.0 μM) in CaSki cells. Two cationic lipids (10 μM) were compared for transport efficiency: polycationic 2,3-dioleoyloxy- N-[2(sperminecarboxamido)ethyl]- N,N-dimethyl-1-propanaminium trifluoroacetate (DOSPA) and monocationic dimethyl-dioctadecylammonium bromide (DDAB). Both liposomes contained dioleoyl-phosphatidylethanolamine (DOPE) as a helper lipid. Endocytosis was found to be the main pathway of cellular uptake of liposomal ODNs. After release from intracellular vesicles, ODNs were carried into the perinuclear area. The nuclear membrane was found to be a barrier against the penetration of ODNs delivered by liposomes into the nucleus. Release from vesicles and transport into the nuclear area was faster when the oligo-DDAB/DOPE complex had a positive net charge (0.1 and 0.2 μM ODN concentrations), and only under this condition were some ODNs found in nucleoplasm. Although DOSPA/DOPE could also efficiently deliver ODNs into the cytosol, no ODNs were found in nucleoplasm. These findings suggest that both the type of liposome and the charge of the oligo-liposome complex are important for determination of the intracellular distribution of ODNs.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3