Automated Selection of DAB-labeled Tissue for Immunohistochemical Quantification

Author:

Brey Eric M.12,Lalani Zahid3,Johnston Carol1,Wong Mark3,McIntire Larry V.2,Duke Pauline J.4,Patrick Charles W.1

Affiliation:

1. Laboratory of Reparative Biology and Bioengineering, Department of Plastic Surgery, University of Texas M. D. Anderson Cancer Center and University of Texas Center for Biomedical Engineering, Houston, Texas

2. Department of Bioengineering, Institute for Biosciences and Bioengineering, Rice University, Houston, Texas

3. Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston-Dental Branch, Houston, Texas

4. Department of Orthodontics, University of Texas Health Science Center at Houston-Dental Branch, Houston, Texas

Abstract

The increased use of immunohistochemistry (IHC) in both clinical and basic research settings has led to the development of techniques for acquiring quantitative information from immunostains. Staining correlates with absolute protein levels and has been investigated as a clinical tool for patient diagnosis and prognosis. For these reasons, automated imaging methods have been developed in an attempt to standardize IHC analysis. We propose a novel imaging technique in which brightfield images of diaminobenzidene (DAB)-labeled antigens are converted to normalized blue images, allowing automated identification of positively stained tissue. A statistical analysis compared our method with seven previously published imaging techniques by measuring each one's agreement with manual analysis by two observers. Eighteen DAB-stained images showing a range of protein levels were used. Accuracy was assessed by calculating the percentage of pixels misclassified using each technique compared with a manual standard. Bland-Altman analysis was then used to show the extent to which misclassification affected staining quantification. Many of the techniques were inconsistent in classifying DAB staining due to background interference, but our method was statistically the most accurate and consistent across all staining levels.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3