High-density Hapten Labeling and HRP Conjugation of Oligonucleotides for Use as In Situ Hybridization Probes to Detect mRNA Targets in Cells and Tissues

Author:

Luehrsen Kenneth R.1,Davidson Scott1,Ji Lee Yun1,Rouhani Riaz,Soleimani Ali1,Raich Teresa1,Cain Carol A.1,Collarini Ellen J.1,Yamanishi Douglas T.1,Pearson Jennifer1,Magee Kerry1,Madlansacay Mary Rose1,Bodepudi Veeraiah2,Davoudzadeh David2,Schueler Paula A.1,Mahoney Walt1

Affiliation:

1. Roche Diagnostics, Chief Technology Office, California

2. Roche Molecular Systems, California

Abstract

Oligonucleotides that carry a detectable label can be used to probe for mRNA targets in in situ hybridization experiments. Oligonucleotide probes (OPs) have several advantages over cDNA probes and riboprobes. These include the easy synthesis of large quantities of probe, superior penetration of probe into cells and tissues, and the ability to design gene- or allele-specific probes. One significant disadvantage of OPs is poor sensitivity, in part due to the constraints of adding and subsequently detecting multiple labels per oligonucleotide. In this study, we compared OPs labeled with multiple detectable haptens (such as biotin, digoxigenin, or fluorescein) to those directly conjugated with horseradish peroxidase (HRP). We used branching phosphoramidites to add from two to 64 haptens per OP and show that in cells, 16-32 haptens per OP give the best detection sensitivity for mRNA targets. OPs were also made by directly conjugating the same oligonucleotide sequences to HRP. In general, the HRP-conjugated OPs were more sensitive than the multihapten versions of the same sequence. Both probe designs work well both on cells and on formaldehyde-fixed, paraffin-embedded tissues. We also show that a cocktail of OPs further increases sensitivity and that OPs can be designed to detect specific members of a gene family. This work demonstrates that multihapten-labeled and HRP-conjugated OPs are sensitive and specific and can make superior in situ hybridization probes for both research and diagnostic applications.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3