Mitochondrial Transmembrane Potential Changes Support the Concept of Mitochondrial Heterogeneity During Apoptosis

Author:

Krysko Dmitri V.1,Roels Frank1,Leybaert Luc2,D'Herde Katharina1

Affiliation:

1. Department of Human Anatomy, Embryology, Histology and Medical Physics

2. Department of Physiology and Pathophysiology, Ghent University, Ghent, Belgium

Abstract

Dissipation of mitochondrial membrane potential (Δψm) and release of cytochrome c from mitochondria appear to be key events during apoptosis. The precise relationship (cause or consequence) between both is currently unclear. We previously showed in a model of serum-free cultured granulosa explants that cytochrome c is retained in a subset of respiring mitochondria until late in the apoptotic process. In this study we further investigated the issue of heterogeneity by using the Δψm-sensitive probe CM-H2TMRos in combination with a DNA fluorochrome. Changes of Δψm were assessed qualitatively by epifluorescence microscopy and were quantified using digital imaging microscopy. This approach yielded the following results: (a) CM-H2TMRos staining is a reliable and specific procedure to detect Δψm changes in granulosa cells explants; (b) dissipation of transmembrane potential is an early event during apoptosis preceding nuclear changes but is confined to a subpopulation of mitochondria within an individual cell; (c) in frankly apoptotic cells a few polarized mitochondria can be detected. These findings support the hypothesis that ATP needed for completion of the apoptotic cascade can be generated during apoptosis in a subset of respiring mitochondria and is not necessarily derived from anaerobic glycolysis.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3