Discovery and Longitudinal Evaluation of Candidate Biomarkers for Ischaemic Stroke by Mass Spectrometry-Based Proteomics

Author:

Dagonnier Marie1,Cooke Ira Robin23,Faou Pierre2,Sidon Tara Kate1,Dewey Helen Margaret1,Donnan Geoffrey Alan1,Howells David William14

Affiliation:

1. Stroke Department, The Florey Institute of Neuroscience & Mental Health and Melbourne Brain Centre, Melbourne, VIC, Australia

2. La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia

3. Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, La Trobe University, Melbourne, VIC, Australia

4. School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS, Australia

Abstract

Application of acute therapies such as thrombolysis for ischaemic stroke (IS) is constrained because of diagnostic uncertainty and the dynamic nature of stroke biology. To investigate changes in blood proteins after stroke and as a result of thrombolysis treatment we performed label-free quantitative proteomics on serum samples using high-resolution mass spectrometry and long high-performance liquid chromatography gradient (5 hours) combined with a 50-cm column to optimise the peptide separation. We identified (false discovery rate [FDR]: 1%) and quantified a total of 574 protein groups from a total of 92 samples from 30 patients. Ten patients were treated by thrombolysis as part of a randomised placebo-controlled trial and up to 5 samples were collected from each individual at different time points after stroke. We identified 26 proteins differently expressed by treatment group (FDR: 5%) and significant changes of expression over time for 23 proteins (FDR: 10%). Molecules such as fibrinogen and C-reactive protein showed expression profiles with a high-potential clinical utility in the acute stroke setting. Protein expression profiles vary acutely in the blood after stroke and have the potential to allow the construction of a stroke clock and to have an impact on IS treatment decision making.

Publisher

SAGE Publications

Subject

Biochemistry (medical),Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3