Recent advances in asthma biomarker research

Author:

Leung Ting F.1,Ko Fanny W. S.2,Wong Gary W. K.3

Affiliation:

1. Department of Pediatrics, The Chinese University of Hong Kong 6/F, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong SAR, China

2. Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China

3. Department of Pediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China

Abstract

Asthma is characterized by recurrent and reversible airflow obstruction, which is routinely monitored by history and physical examination, spirometry and home peak flow diaries. As airway inflammation is central to asthma pathogenesis, its monitoring should be part of patient management plans. Fractional exhaled nitric oxide level (FeNO) is the most extensively studied biomarker of airway inflammation, and FeNO references were higher in Chinese (Asians) than Whites. Published evidence was inconclusive as to whether FeNO is a useful management strategy for asthma. Other biomarkers include direct (histamine, methacholine) and indirect (adenosine, hypertonic saline) challenges of bronchial hyperresponsiveness (BHR), induced sputum and exhaled breath condensate (EBC). A management strategy that normalized sputum eosinophils among adult patients resulted in reductions of BHR and asthma exacerbations. However, subsequent adult and pediatric studies failed to replicate these benefits. Asthma phenotypes as defined by inflammatory cell populations in sputum were also not stable over a 12-month period. A recent meta-analysis concluded that induced sputum is not accurate enough to be applied in routine monitoring of childhood asthma. There is poor correlation between biomarkers that reflect different asthma dimensions: spirometry (airway caliber), BHR (airway reactivity) and FeNO or induced sputum (airway inflammation). Lastly, EBC is easily obtained noninvasively by cooling expired air. Many biomarkers ranging from acidity (pH), leukotrienes, aldehydes, cytokines to growth factors have been described. However, significant overlap between groups and technical difficulty in measuring low levels of inflammatory molecules are the major obstacles for EBC research. Metabolomics is an emerging analytical method for EBC biomarkers. In conclusion, both FeNO and induced sputum are useful asthma biomarkers. However, they will only form part of the clinical picture. Longitudinal studies with focused hypotheses and well-designed protocols are needed to establish the roles of these biomarkers in asthma management. The measurement of biomarkers in EBC remains a research tool.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3