MiR-155 Inhibits Malignant Biological Behavior of Human Liver Cancer Cells by Regulating SRPK1

Author:

Wang Qi1,Wang Guo-tai1,Lu Wei-hong1ORCID

Affiliation:

1. Department of Hepatobiliary Surgery, The Affiliated Hospital of Shananxi University of Chinese Medicine, Xianyang, China

Abstract

Although the treatment of liver cancer has made great progress, the mechanism of its occurrence is not completely clear. miR-155 plays an important regulatory role in tumorigenesis and development, including survival, proliferation, migration and invasion. However, the role and regulatory mechanism of miR-155 in liver cancer has rarely been reported. We analyzed miR-155 expression in liver cancer tissue samples and cell lines by qRT-PCR. The expression of miR-155 was measured by qRT-PCR before and after miR-155-mimic and sh-miR-155 transfection. CCK-8 and clonogenic assays were used to detect the proliferation of liver cancer cells. Cell scratch and invasion assays were used to detect migration and invasion. RNA-seq was used to detect the difference in RNA expression in liver cancer cells. SRPK1 expression was detected in liver cancer cells before and after transfection by qRT-PCR and western blotting. We observed that miR-155 was downregulated in liver cancer tissues compared with normal tissues. Furthermore, we demonstrated that liver cancer cell proliferation, migration and invasion are markedly suppressed by miR-155. Importantly, we also demonstrated that SRPK1 is directly regulated by miR-155 during the process of liver cancer cell proliferation and metastasis. Finally, the overexpression of miR-155 inhibits malignant biological behavior of human liver cancer cells. We report the abnormal expression of the miR-155 cluster in liver cancer cells, which inhibits cancer cell proliferation and metastasis. In addition, we identified SRPK1 as a target gene of miR-155 during the process of liver cancer cell proliferation and metastasis.

Funder

Shaanxi Provincial Department of Science and Technology

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3