Tumor Targeting by Conditioned Medium Derived From Human Amniotic Membrane: New Insight in Breast Cancer Therapy

Author:

Jafari Ameneh1ORCID,Rezaei-Tavirani Mostafa1,Niknejad Hassan2,Zali Hakimeh13

Affiliation:

1. Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2. Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3. Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Objectives: Traditional breast cancer treatments have challenges including inefficiency, multidrug resistance, severe side effects, and targeting non-specifically. The development of alternative treatment strategies has attracted a great deal of interest. Using the amniotic membrane has become a promising and convenient new approach for cancer therapy. This study aimed to evaluate the anti-cancer ability of conditioned medium extracted from the human amniotic membrane (hAM-CM) on breast cancer cells. Methods: Conditioned medium was collected after 48 h incubation of hAM in epithelial up manner. MTT, cell cycle, apoptosis, colony formation, and sphere assays were used to determine the impact of hAM-CM on breast cancer cell lines. The effects of hAM-CM on the migration and invasion of breast cancer cells were determined using scratch wound healing and transwell assays, respectively. Results: Based on the results, cell viability was significantly decreased by hAM-CM in a dose-dependent manner. The hAM-CM remarkably induced apoptosis and necrosis of cancer cells. Moreover, cell migration and invasion potential of cancer cells decreased after the hAM-CM treatment. Further, both the number of colonies and their morphologies were affected by the treatment. In the treated group, a significant decrease in the number of colonies along with an obvious change in their morphologies from holoclone shape to a dominant paracolone structure was observed. Conclusion: Our results indicate that the conditioned medium derived from the human amniotic membrane able to inhibit proliferation and metastasis of tumor cells and can be considered a natural and valuable candidate for breast cancer therapy.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3