Competitive Risk Model Nomogram to Predict Prognosis in Patients Aged Over 65 Years with nonmetastatic Cervical Cancer: A SEER Population-Based Study

Author:

Jiao Shengyuan12,Guo Li1,Da Fei1,Gao Qiaohui1,Ren Zhenghua1,Wang Jianyu1,Fu Quanwei1,Liu Junye1ORCID

Affiliation:

1. Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an, China

2. Department of Disease Prevention and Control, Air Force Hospital of Eastern Theater, Nanjing, China

Abstract

Objective: The prognostic factors for elderly patients with cervical cancer differ from those of younger patients. Competitive risk events could cause biases in the Cox proportional hazards (PH) model. This study aimed to construct a competitive risk model (CRM) nomogram for patients aged > 65 years with nonmetastatic cervical cancer. Methods: We retrospectively analyzed data extracted from the Surveillance, Epidemiology, and End Results (SEER) database and a total of 1856 patients from 18 cancer registries across the United States diagnosed between 2010 and 2015 were included. Kaplan–Meier analysis and log-rank tests were used to compare intergroup survival. Univariate and multivariate Cox proportional regression analyses were performed to identify independent prognostic factors. The cumulative incidence function (CIF) and Fine and Gray's test were used to determine the impact of competitive risk events on prognosis. The CRM nomogram was internally and externally validated using time-dependent receiver operator characteristic (ROC) curve (time-AUC), Brier scores, Harrell's concordance index (C-index), calibration curve, and decision curve analysis (DCA). Results: Analyses revealed that histology, age, the International Federation of Gynaecologists and Obstetricians (FIGO) stage, number of in situ malignancies, chemotherapy, radiotherapy (RT), and surgery were independent prognostic factors. The CRM nomogram accurately predicted 1-year, 3-year, and 5-year disease-specific survival (DSS). The C-indexes and Brier scores of the CRM nomogram were 0.641 and 0.094, respectively, at the 1-year cut-off in the training set. The time-AUC of the CRM nomogram at the 1-year, 3-year, and 5-year intervals in the training set were 77.6%, 77.3%, and 74.5%, respectively. The calibration curve demonstrated a favorable concordance. DCA suggested that the nomogram had a good net benefit. Therefore, the Cox model underestimated the weight of risk factors compared to CRM. Conclusions: This study presents the CRM nomogram to predict DSS in patients aged > 65 years with nonmetastatic cervical cancer. It can help clinicians implement more accurate personalized diagnostic and treatment modalities for elderly patients with cervical cancer.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3