Utilization of Diaphragm Motion to Predict the Displacement of Liver Tumors for Patients Treated with Carbon ion Radiotherapy

Author:

Li Yao123,Tang Wumiao123,Zhang Jiangbing123,Bu Ruirui123,Hsi Wenchien45,Li Yongqiang123ORCID

Affiliation:

1. Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China

2. Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China

3. Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China

4. Radiation Oncology, University of Florida, Gainesville, FL, USA

5. University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA

Abstract

Objectives: To establish and validate a linear model utilizing diaphragm motion (DM) to predict the displacement of liver tumors (DLTs) for patients who underwent carbon ion radiotherapy (CIRT). A total of 60 pairs of planning and reviewing four-dimensional computed tomography (4DCT) sets over 23 patients were used. Method: We constructed an averaged computed tomography (CT) set for each either planning or reviewing 4DCT within respiratory phases between 20% of exhale and inhale. A rigid image registration to align bony structures was performed between planning and reviewing 4DCT. The position changes on top of diaphragm in superior–inferior (SI) direction between 2 CTs to present DM were obtained. The translational vectors in SI from matching to present DLT were obtained. The linear model was built by training data for 23 imaging pairs. A distance model utilized the cumulative probability distribution (CPD) of DM or DLT and was compared with the linear model. We conducted the statistical regression analysis with receiver operating characteristic (ROC) testing data of 37 imaging pairs to validate the performance of our linear model. Results: The DM within 0.5 mm was true positive (TP) with an area under the ROC curve (AUC) of 0.983 to predict DLT. The error of predicted DLT within half of its mean value indicated the reliability of prediction method. The 23 pairs of data showed (4.5 ± 3.3) mm for trend of DM and (2.2 ± 1.6) mm for DLT. A linear model of DLT = 0.46*DM + 0.12 was established. The predicted DLT was (2.2 ± 1.5) mm with a prediction error of (0.3 ± 0.3) mm. The accumulated probability of observed and predicted DLT with < 5.0 mm magnitude was 93.2% and 94.5%, respectively. Conclusion: We utilized the linear model to set the proper beam gating for predicting DLT within 5.0 mm to treat patients. We will investigate a proper process on x-ray fluoroscopy images to establish a reliable model predicting DLT for DM observed in x-ray fluoroscopy in the following two years.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3